Phương trình chứa căn

TT

cho 2 số tự nhiên thoả mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

Tìm giá trị của biểu thức P=\(x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)

TP
12 tháng 8 2019 lúc 11:01

\(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)

Nhân hai vế của pt với \(\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)

\(\Leftrightarrow\left(x+\sqrt{1+y^2}\right)\left(x-\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\left(y-\sqrt{1+x^2}\right)=\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)

\(\Leftrightarrow\left(x^2-y^2-1\right)\left(y^2-x^2-1\right)=xy-x\sqrt{1+x^2}-y\sqrt{1+y^2}+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)

\(\Leftrightarrow\left[-1+\left(x^2-y^2\right)\right]\left[-1-\left(x^2-y^2\right)\right]=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(xy+x\sqrt{1+y^2}+y\sqrt{1+x^2}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)\)

\(\Leftrightarrow1^2-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)

\(\Leftrightarrow1-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)

\(\Leftrightarrow2\left(1-xy\right)=\left(x^2-y^2\right)^2+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)(*)

Mặt khác : \(2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{x^2+y^2+1+x^2y^2}\)

\(=2\sqrt{x^2+2xy+y^2+x^2y^2-2xy+1}\)

\(=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)

\(\left(x^2-y^2\right)^2\ge0\forall x;y\) do đó theo (*) ta có :

\(2\left(1-xy\right)\ge2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)

\(\Leftrightarrow1-xy\ge\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\ge\sqrt{\left(xy-1\right)^2}=\left|xy-1\right|\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y^2\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow x=-y\)

Thay vào P ta được :

\(P=x^7-x^7+2x^5-2x^5-3x^3+3x^3+4x-4x+100\)

\(P=0+0-0+0+100\)

\(P=100\)

Vậy...

p/s: mệt...

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
PA
Xem chi tiết
PT
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
NX
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết