a: Thay x=9 vào A, ta được:
\(A=\dfrac{3+2}{3+5}=\dfrac{5}{8}\)
b: \(B=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\)
\(=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{1}{\sqrt{x}-5}\)
3: \(A=B\cdot\left|x-4\right|\)
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{\left|x-4\right|}{\sqrt{x}-5}\)
=>\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)=\left(\sqrt{x}+5\right)\cdot\left|\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\right|\)
=>\(\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)=\left(\sqrt{x}+5\right)\left|\sqrt{x}-2\right|\cdot\left(\sqrt{x}+2\right)\)
=>\(\left(\sqrt{x}-5\right)=\left(\sqrt{x}+5\right)\cdot\left|\sqrt{x}-2\right|\)(1)
TH1: x>=4
(1) sẽ trở thành \(\left(\sqrt{x}-5\right)=\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)\)
=>\(x+3\sqrt{x}-10=\sqrt{x}-5\)
=>\(x+2\sqrt{x}-5=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=-1+\sqrt{6}\left(nhận\right)\\\sqrt{x}=-1-\sqrt{6}\left(loại\right)\end{matrix}\right.\)
=>\(\sqrt{x}=\sqrt{6}-1\)
=>\(x=\left(\sqrt{6}-1\right)^2=7-2\sqrt{6}< 4\)
=>Loại
TH2: \(0< =x< 4\)
(1) sẽ trở thành \(\left(\sqrt{x}-5\right)=\left(\sqrt{x}+5\right)\left(-\sqrt{x}+2\right)\)
=>\(\sqrt{x}-5=-x+2\sqrt{x}-5\sqrt{x}+10\)
=>\(\sqrt{x}-5=-x-3\sqrt{x}+10\)
=>\(\sqrt{x}-5+x+3\sqrt{x}-10=0\)
=>\(x+4\sqrt{x}-15=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=-2+\sqrt{19}\left(nhận\right)\\\sqrt{x}=-2-\sqrt{19}\left(loại\right)\end{matrix}\right.\)
=>\(x=\left(\sqrt{19}-2\right)^2=23-4\sqrt{19}>4\)
=>Loại
Vậy: \(x\in\varnothing\)