Do \(1\le a;b;c\le6\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\ge0\\\left(6-a\right)\left(6-b\right)\left(6-c\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)+\left(6-a\right)\left(6-b\right)\left(6-c\right)\ge0\)
\(\Leftrightarrow5\left(ab+bc+ca\right)-35\left(a+b+c\right)+215\ge0\)
\(\Leftrightarrow5\left(ab+bc+ca\right)-205\ge0\)
\(\Rightarrow ab+bc+ca\ge41\)
\(P_{min}=41\) khi \(\left(a;b;c\right)=\left(1;5;6\right)\) và các hoán vị
Đúng 0
Bình luận (0)