NK

chỉ cần ý c th

NT
13 tháng 5 2024 lúc 22:11

Câu 4:

a: Xét ΔHEB vuông tại E và ΔHFC vuông tại F có

\(\widehat{EHB}=\widehat{FHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB~ΔHFC

b: Xét ΔAEH vuông tại E và ΔADB vuông tại D có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AH}{AB}\)

=>\(AE\cdot AB=AH\cdot AD\)

c: Xét ΔAFB vuông tại F và ΔAEC vuông tại E có

\(\widehat{FAB}\) chung

Do đó: ΔAFB~ΔAEC

=>\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

Xét ΔAFE và ΔABC có

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAFE~ΔABC

=>\(\left(\dfrac{AF}{AB}\right)^2=\dfrac{S_{AEF}}{S_{ABC}}\)

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{2}\)

=>\(S_{AEF}=\dfrac{1}{2}\cdot S_{ABC}\)

\(\left(\dfrac{AF}{AB}\right)^2=\dfrac{1}{2}\)

=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}=\dfrac{\sqrt{2}}{2}\)

Xét ΔABF vuông tại F có \(sinABF=\dfrac{AF}{AB}=\dfrac{\sqrt{2}}{2}\)

nên \(\widehat{ABF}=45^0\)

=>\(\widehat{ACE}=45^0\)

Xét tứ giác BEHD có \(\widehat{BEH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EBH}=45^0\)

Xét tứ giác CFHD có \(\widehat{CFH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CFHD là tứ giác nội tiếp

=>\(\widehat{FDH}=\widehat{FCH}=45^0\)

\(\widehat{EDF}=\widehat{EDH}+\widehat{FDH}=45^0+45^0=90^0\)

=>ΔEDF vuông tại D

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
HH
Xem chi tiết
PN
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
LT
Xem chi tiết