Có 2 giá trị \(a=\left\{-1;2\right\}\)
Có 2 giá trị \(a=\left\{-1;2\right\}\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\)
3) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\)
1) Tính \(I=\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2}-\sqrt{n^2-1}\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+2n+2}+n\right)\)
1) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt[3]{n^3+3n^2+1}-n\right)\)
2) Tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-\sqrt[3]{8n^3+n}\right)\)
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n^2+6n}-n\right)\)
2) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{n+1}-\sqrt{n-1}\right)\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\sqrt{n^2-1}+3n\)
2) tính giới hạn I = \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+5}+n\right)\)
Tính giới hạn của dãy số
a) lim \(\left(\sqrt{n^2-1}-\sqrt{3n^2+2}\right)\)
tính giới hạn của hàm số :
lim \(\frac{n\left(\sqrt[3]{2-n^3}+n\right)}{\sqrt{n^2+1}-n}\)