WR

Ch biểu thức

A =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

Rút gọn A

Tìm x để A<1

HN
4 tháng 9 2016 lúc 10:46

Điều kiện xác định : \(x\ge0,x\ne4,x\ne9\)

\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A< 1\) thì \(\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow1+\frac{4}{\sqrt{x}-3}< 1\Rightarrow\frac{4}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Rightarrow x< 9\)

Kết hợp cùng với điều kiện đề bài để tìm các giá trị của x.

 

Bình luận (0)

Các câu hỏi tương tự
WR
Xem chi tiết
WR
Xem chi tiết
WR
Xem chi tiết
NA
Xem chi tiết
LY
Xem chi tiết
WR
Xem chi tiết
WR
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết