a.
\(y'=4x^3-4x=4x\left(x^2-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
Dấu y' trên trục số:
Hàm đồng biến trên các khoảng \(\left(-1;0\right)\) và \(\left(1;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
b.
\(y'=x^2+6x-7=0\Rightarrow\left[{}\begin{matrix}x=-7\\x=1\\\end{matrix}\right.\)
Dấu của y' trên trục số:
Hàm đồng biến trên các khoảng \(\left(-\infty;-7\right)\) và \(\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-7;1\right)\)