Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{180^0}{6}=30^0\)
Do đó: \(\left\{{}\begin{matrix}\widehat{A}=30^0\\\widehat{B}=60^0\\\widehat{C}=90^0\end{matrix}\right.\)
Trong \(\Delta ABC,\) ta có \(\widehat{A}\) \(+\widehat{B}\) \(+\widehat{C}\) \(=180^o\)
Từ giả thiết, ta có:
\(\dfrac{\widehat{A}}{1};\dfrac{\widehat{B}}{2};\dfrac{\widehat{C}}{3}\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^o}{6}=30^o\)
Từ đó suy ra: \(\widehat{A}=30^o,B=60^o,\widehat{C}=90^o\)
Vậy.............