H24

Câu 24. Cho tam giác ABC vuông tại A(AB<AC). Tia phân giác góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA

a.     Chứng minh rằng tam giác ABD= tam giác EBD

b.    Chứng minh Góc DEB=90 độ

c.     Chứng minh DC > DA

TN
6 tháng 3 2023 lúc 17:11

`a)`

Có `BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`

Xét `Delta ABD` và `DElta EBD` có :

`{:(BA=BE(GT),(hat(B_1)=hat(B_2)(cmt),(BD-chung):}}`

`=>Delta ABD=Delta EBD(c.g.c)(đpcm)`

`b)`

Có `Delta ABD=Delta EBD(cmt)=>hat(A)=hat(E_1)` ( 2 góc t/ứng )

mà `hat(A)=90^0`

nên `hat(E_1)=90^0(đpcm)`

Bình luận (0)
KR
6 tháng 3 2023 lúc 17:14

`\color {blue} \text {_Namm_}`

`a,`

Xét Tam giác `ABD` và Tam giác `EBD` có:

`BA=BE (g``t)`

\(\widehat{ABD}=\widehat{EBD}\) `(` tia phân giác \(\widehat{ABE}\) `)`

`BD` chung

`=>` Tam giác `ABD =` Tam giác `EBD (c-g-c)`

`b,` Vì Tam giác `ABD =` Tam giác `EBD (a)`

`->`\(\widehat{BAD}=\widehat{BED}\) `(2` góc tương ứng `)`

Mà góc \(\widehat{A}\) vuông `(`\(\widehat{A}=90^0\) `)`

`-> `\(\widehat{BAD}=\widehat{BED}=90^0\)

`c,` Vì Tam giác `ABD =` Tam giác `EBD (a)`

`-> DE=DA (2` cạnh tương ứng `)`

Xét Tam giác `DEC:`

\(\widehat{DEC}=90^0\) `-> DC` là cạnh lớn nhất `-> DC>DE`

Mà `DE=DA -> DC>DA`

 loading...

Bình luận (0)

Các câu hỏi tương tự
XN
Xem chi tiết
HN
Xem chi tiết
BN
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
DD
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
TV
Xem chi tiết