TN

câu 1 cho phương trình bậc 2 có ẩn x:\(x^2-2mx+2m-1=0\)

1)chứng tỏ phương trình có nghiệm \(x_1;x_2\) với mọi m

2)chứng minh\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\)

     a)chứng minh \(A=8m^2-18m+9\)

     b)tìm m để A đạt giá trị nhỏ nhất

VD
21 tháng 3 2022 lúc 10:26

1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Suy ra pt luôn có 2 nghiệm

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)

Đề sai r bạn

\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)

Vậy m=`7/4` thì A đạt GTNN

 

Bình luận (0)
NT
21 tháng 3 2022 lúc 10:24

1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)

Do đó: Phương trình luôn có hai nghiệm

2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)

\(=\left(-2m\right)^2-7\left(2m-1\right)\)

\(=4m^2-14m+7\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
DA
Xem chi tiết
TC
Xem chi tiết
TA
Xem chi tiết
LH
Xem chi tiết
HL
Xem chi tiết
NA
Xem chi tiết