Bài 5. ÔN TẬP CUỐI NĂM

H24

Câu 1: a/ Chứng minh rằng : \(\frac{sin2a+cosa}{2sina+1}=cosa\)
b/ Thu gọn biểu thức : P= \(\frac{\left(sin^4x-cos^4x\right)\left[\left(sinx+cosx\right)^2-1\right]}{1+cos4x}\)

TA
20 tháng 6 2020 lúc 20:51

a, \(\frac{sin2a+cosa}{2sina+1}=\frac{2sinacosa+cóa}{2sina+1}\)= \(\frac{cosa\left(2sina+1\right)}{2sina+1}\)= cos a (đpcm)

b, P= \(\frac{\left(sin^2x-cos^2x\right)\left(sin^2+cos^2x\right).\left(sin^2+2sinx.cosx+cos^2x-1\right)}{1+2cos2x-1}\)

= \(\frac{\left(sin^2x-cos^2x\right).2sinx.cosx}{2cos2x}\)

= \(\frac{-cos2x.sin2x}{2.cos2x}\)= -1/2 sin 2x

#mã mã#

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
NC
Xem chi tiết
JR
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
CT
Xem chi tiết
CT
Xem chi tiết
CD
Xem chi tiết
NP
Xem chi tiết