NH

cần giúp gấp ạ, em cảm ưn ạ

H24
22 tháng 2 2024 lúc 22:42

a/\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{50}{101}\)
b/\(B=\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}...+\dfrac{4}{49.51}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=2\left(1-\dfrac{1}{51}\right)\)
\(=2\cdot\dfrac{50}{51}\)
\(=\dfrac{100}{51}\)
c/\(C=\dfrac{6}{3.5}+\dfrac{6}{5.7}+\dfrac{6}{7.9}+...+\dfrac{6}{99.101}\)
\(=3\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\right)\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=3\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)
\(=3\cdot\dfrac{98}{303}\)
\(=\dfrac{98}{101}\)
d/\(D=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{1023}\)
\(=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{31.33}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{31.33}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{33}\)
\(=\dfrac{16}{33}\)
#TiendatzZz

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HP
Xem chi tiết
DV
Xem chi tiết
Vi
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết