HV

cảm ơn nhiều ạaaloading...  

NT
23 tháng 1 2024 lúc 22:16

a: Xét ΔEBF và ΔECD có

\(\widehat{EBF}=\widehat{ECD}\)(hai góc so le trong, BF//CD)

\(\widehat{BEF}=\widehat{CED}\)(hai góc đối đỉnh)

Do đó: ΔEBF~ΔECD(2)

Xét ΔEBF và ΔDAF có

\(\widehat{F}\) chung

\(\widehat{EBF}=\widehat{DAF}\)(hai góc đồng vị, BE//AD)

Do đó: ΔEBF~ΔDAF(1)

Từ (1) và (2) suy ra ΔECD~ΔDAF

b: BE+CE=BC

=>BE+4=6

=>BE=2(cm)

Xét ΔFAD có BE//AD

nên \(\dfrac{FB}{FA}=\dfrac{EB}{AD}\)

=>\(\dfrac{FB}{BF+15}=\dfrac{2}{6}=\dfrac{1}{3}\)

=>\(3BF=BF+15\)

=>2BF=15

=>BF=7,5(cm)

AF=AB+BF=15+7,5=22,5(cm)

c: Ta có: ΔECD~ΔDAF

=>\(\dfrac{EC}{DA}=\dfrac{DE}{DF}\)

=>\(EC\cdot DF=DE\cdot DA\)

Ta có: ΔECD~ΔDAF

=>\(\dfrac{CD}{AF}=\dfrac{EC}{DA}\)

=>\(EC\cdot AF=CD\cdot DA\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
3T
Xem chi tiết
PL
Xem chi tiết
HT
Xem chi tiết
98
Xem chi tiết
HH
Xem chi tiết
QN
Xem chi tiết
TH
Xem chi tiết
VG
Xem chi tiết