NV

Các bạn ơi, lm giúp m bài này đi.M cảm ơn nhìu. mai m phải học rồi

NT
23 tháng 1 2024 lúc 18:17

Bài 4:

a: \(4x=3y\)

=>\(\dfrac{x}{3}=\dfrac{y}{4}=k\)

=>x=3k; y=4k

\(\left(x-y\right)^2+\left(x+y\right)^2=50\)

=>\(\left(3k-4k\right)^2+\left(3k+4k\right)^2=50\)

=>\(\left(-k\right)^2+\left(7k\right)^2=50\)

=>\(50k^2=50\)

=>\(k^2=1\)

TH1: k=1

=>\(x=3\cdot1=3;y=4\cdot1=4\)

TH2: k=-1

=>\(x=3\cdot\left(-1\right)=-3;y=4\cdot\left(-1\right)=-4\)

b: 3x=2y

=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)

=>x=2k; y=3k

\(\left(x+y\right)^3-\left(x-y\right)^3=126\)

=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)

=>\(\left(5k\right)^3-\left(-k\right)^3=126\)

=>\(126k^3=126\)

=>\(k^3=1\)

=>k=1

=>\(x=2\cdot1=2;y=3\cdot1=3\)

bài 3:

a: \(\dfrac{x}{2}=\dfrac{y}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{2}\)

=>\(\dfrac{y}{15}=\dfrac{z}{10}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

mà 2x+3y-4z=34

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x+3y-4z}{2\cdot6+3\cdot15-4\cdot10}=\dfrac{34}{12+45-40}=2\)

=>\(x=2\cdot6=12;y=2\cdot15=30;z=2\cdot10=20\)

b: 2x=3y

=>\(\dfrac{x}{3}=\dfrac{y}{2}\)

=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(3\right)\)

5y=7z

=>\(\dfrac{y}{7}=\dfrac{z}{5}\)

=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{63-98+50}=\dfrac{30}{113-98}=2\)

=>\(x=2\cdot21=42;y=2\cdot14=28;z=2\cdot10=20\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
LV
Xem chi tiết
TT
Xem chi tiết
NV
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
B2
Xem chi tiết
H24
Xem chi tiết