H24

c) Gọi x1, x2 là hai nghiệm của phương trình: x 2 − 2(m − 3)x − 6m − 7 = 0 với m là tham số. Tìm giá trị nhỏ nhất của biểu thức C = (x1 + x2) 2 + 8x1x2

NH
5 tháng 3 2022 lúc 22:13

\(x^2-2\left(m-3\right)x-6m-7\\\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2-6m+9+6m+7\\ =m^2+16>0\forall m\)

=> pt luôn có 2 no pb

theo viet \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1.x_2=-6m-7\end{matrix}\right.\)

\(C=\left(x_1+x_2\right)^2+8x_1x_2\\ =\left[2\left(m-3\right)\right]^2+8\left(-6m-7\right)\\ =4\left(m-3\right)^2-48m-56\\ =4\left(m^2-6m+9\right)-48m-56\\ =4m^2-72m-20\\ =\left(2m\right)^2-2.2m.18+18^2-344\\ =\left(2m-18\right)^2-344\)

có \(\left(2m-18\right)^2\ge0\forall m\\ \Rightarrow\left(2m-18\right)^2-344\ge-344\)

vậy..

Bình luận (0)
NT
5 tháng 3 2022 lúc 22:05

\(C=\left(x_1+x_2\right)^2+8x_1x_2\)

\(=\left(2m-6\right)^2+8\left(-6m-7\right)\)

\(=4m^2-24m+36-48m-56\)

\(=4m^2-72m-20\)

\(=4m^2-72m+324-344\)

\(=\left(2m-18\right)^2-344\ge-344\forall x\)

Dấu '=' xảy ra khi m=9

Bình luận (0)
NT
5 tháng 3 2022 lúc 22:06

\(\Delta'=\left(m-3\right)^2-\left(-6m-7\right)=m^2-6m+9+6m+7=m^2+16>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=-6m-7\end{matrix}\right.\)

\(C=4\left(m-3\right)^2+8\left(-6m-7\right)\)

\(=4\left(m^2-6m+9\right)-48m-56=4m^2-72m-20\)

\(=4\left(m^2-2.9m+81-81\right)-20=4\left(m+9\right)^2-425\ge-425\)

Dấu ''='' xảy ra khi m = -9 

Bình luận (0)

Các câu hỏi tương tự
QH
Xem chi tiết
HV
Xem chi tiết
PB
Xem chi tiết
FM
Xem chi tiết
PB
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết