MH

biết tỉ số các cạnh của góc vuông của một tam giác vuông là 5:6 ;cạnh huyền 112cm. tính độ dài hình chiếu của mỗi cạnh góc vuông lên cạnh huyền

H9
28 tháng 8 2023 lúc 9:54

Cho tam giác đó là tam giác ABC vuông tại A có đường cao AH:

Theo đề: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow AB=\dfrac{5}{6}AC\)

Mà: Xét tam giác vuông ABC ta có: 

\(AB^2+AC^2=BC^2\) 

\(\Rightarrow\left(\dfrac{5}{6}AC\right)^2+AC^2=112^2\)

\(\Rightarrow\dfrac{25}{36}AC^2+AC^2=12544\)

\(\Rightarrow\dfrac{61}{36}AC^2=12544\)

\(\Rightarrow AC^2\approx7403\Rightarrow AC=\sqrt{7403}\approx86\left(cm\right)\)

\(\Rightarrow AB=\dfrac{5}{6}\cdot86\approx71\left(cm\right)\)

Áp dụng hệ thức hình chiếu và cạnh góc vuông ta có:

\(AB^2=BC\cdot BH\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{71^2}{112}\approx45\left(cm\right)\)

\(AC^2=BC\cdot CH\Rightarrow Ch=\dfrac{AC^2}{BC}=\dfrac{86^2}{112}\approx66\left(cm\right)\)

Bình luận (0)
MD
28 tháng 8 2023 lúc 10:07

Giải

Giả sử ΔABC vuông tại A, có AB : AC = 5 : 6 và BC = 122cm (hình vẽ)

Vì AB : AC = 5 : 6 nên \(\dfrac{ab}{5}=\dfrac{ac}{6}=k\)

suy ra AB = 5k, AC = 6k.

ΔABCvuông tại A, theo định lý Py-ta-go, ta có:

AB2 + AC2 = BC2 hay

(5k)2 + (6k)2 = 1222

=> 61k2 = 1222

=> k2 = 244

=> k ≈≈ 15,62

Vậy AB ≈≈ 15,62 . 5 = 78,1 (cm)

AC ≈≈ 15,62 . 5 = 93,72 (cm)

Kẻ AH ⊥⊥ BC. Theo hệ thức lượng về cạnh góc vuông với hình chiếu của nó trên cạnh huyền, ta có:

AB2 = BH . BC, suy ra \(BH=\dfrac{ab^2}{bc}\approx\dfrac{78,1^2}{122}=\dfrac{6099,61}{122}\approx50\left(cm\right)\)

AC2 = HC . BC, suy ra \(BH=\dfrac{ab^2}{ac}\approx\dfrac{93,72}{122}=\dfrac{8783,44}{122}\approx72\left(cm\right)\)

Trả lời: Độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền là: BH  50cm ; HC  72cm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LV
Xem chi tiết
CC
Xem chi tiết
PT
Xem chi tiết
TA
Xem chi tiết
KN
Xem chi tiết
TT
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết