Tổng các nghiệm nguyên của bất phương trình: \(2\log_2\sqrt{x+1}\le2-\log_2\left(x-2\right)\) bằng
tổng tất cả các nghiệm pt:
a, \(log_2\left(x+1\right)+log_2x=1\)
b, \(log_{\dfrac{1}{3}}^2\left(4x\right)-5log_3\left(2x\right)=5\)
c, \(log_2\left(x-1\right)+log_2\left(x-2\right)=log_5125\)
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn \(1\le x\le2023;1\le y\le2023\)
và \(4^{x+1}+\log_2\left(y+3\right)=2^{y+4}+\log_2\left(2x+1\right)\)
Biết tập nghiệm của bất phương trình x2- 6x + 2 + \(_{log_2\left(x^2-2x\right)+log_{\frac{1}{2}}\left(x-1\right)< 0}\) là khoảng ( 2 ; a + \(\sqrt{b}\)) với a, b là số tự nhiên. Giá trị của a + b bằng
có bao nhiêu giá trị nguyên của m để phương trình \(\left(x-1\right)\log\left(e^{-x}+m\right)=x-2\) có 2 nghiệm thực phân biêt
Có bao nhiêu giá trị nguyên của m để phương trình \(9.3^{2x}-m\left(4.\sqrt[4]{x^2+2x+1}+3m+3\right)3^x+1=0\)có 3 nghiệm thực phân biệt
Cho phương trình :
\(\left(4-6m\right)sin^3x+3\left(2m-1\right)sinx+2\left(m-2\right)sin^2x.cosx-\left(4m-3\right)cosx=0\)
Tìm m để phương trình có nghiệm duy nhất \(x\in[0;\frac{\pi}{4}]\)
Số nghiệm thực của phương trình \(9^x-2\left(7-x\right)3^x+45-18x=0\)
Cho phương trình :
\(\left(4-6m\right)sin^3x+3\left(2m-1\right)sinx+2\left(m-2\right)sin^2x.cosx-\left(4m-3\right)cosx=0\)
Tìm m để phương trình có nghiệm duy nhất \(x\in[0;\frac{\pi}{4}]\)
Không biết OLM còn những người đủ tâm và đủ tầm đề làm những bài như thế này không :(((
Câu 48: Cho hàm số y=f(x) có đạo hàm liên tục trên R và \(f'\left(x\right)=x\left(2x-1\right)\left(x^2+3\right)+2\). Hàm số \(y=f\left(3-x\right)+2x+2023\) đồng biến trên khoảng nào trong các khoảng sau?
A: \(\left(-\infty;3\right)\)
B: (3;5)
C: (2;5/2)
D: (5/2;3)
Câu 50: Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=\left(x-1\right)^2\cdot\left(x^2-2x\right)\) với \(\forall x\in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(f\left(x^2-8x+m\right)\) có 5 điểm cực trị?