PD

Bài 8. Cho tam giác ABC, lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho BD=CE. Gọi I, K, M theo thứ tự là trung điểm của BE và CD, BC a) Chứng minh tam giác IMK cân. b) Gọi giao điểm của IK với AB và AC theo thứ tự là G, H. Chứng minh AG=AH. c) Gọi N là trung điểm của DE. Gọi P và Q theo thứ tự là giao điểm của MN với AB và AC. Chứng minh tam giác APQ cân

NT
14 tháng 8 2021 lúc 23:39

a: Xét ΔBEC có 

I là trung điểm của BE

M là trung điểm của BC

Do đó: IM là đường trung bình của ΔBEC

Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)

Xét ΔDCB có 

K là trung điểm của DC

M là trung điểm của BC

Do đó: KM là đường trung bình của ΔDCB

Suy ra: \(KM=\dfrac{BD}{2}\)

mà BD=CE

nên \(KM=\dfrac{CE}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
LA
Xem chi tiết
NM
Xem chi tiết
VQ
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
PB
Xem chi tiết
NL
Xem chi tiết