6P

Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.

b/ Tứ giác AEFD là hình gì? Vì sao?

c/ Chứng minh tứ giác EIFK là hình chữ nhật.

d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.

Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.

a/ Chứng minh tứ giác BEDF là hình bình hành.

b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD

c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.

NT
25 tháng 12 2021 lúc 21:10

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

Bình luận (1)
DL
25 tháng 12 2021 lúc 22:04

a,xét hbh ABCD có:

AB//DC,AB=DC

=>AE//FC,AE=FC(AE=EB,DF=FC)

vậy tứ giác AECF là hình bình hành

b, tứ giác AEFD là hình bình hành 

Vì AE=DF,AE//DF(AB//DC,AE=EB,DF=FC)

c,xét tứ giác EBFD có:

EB//DF,EB=DF(AB//CD,AE=EB,DF=FC)

=>EI=KF(gt)

     EI//KF(gt)

vậy EIFK là hình bình hành (1)

lại có:

góc AFD và BFC đối xứng qua DC nên:

AFD=BFC(AFD+BFC=90 độ)

góc DFC=AFD+EFA+BEF+BFC=(EFA+BEF)+(AFD+BFC)=180 độ

       BFA=(EFA+BFE)+90 độ=180 độ

     =>BFA=90 độ(2)

Từ (1)và (2) suy ra:

EIFK là hình chữ nhật

d, đk: có 1 góc vuông tronh ABCD

b9,có hình AABC thật à:<

 

Bình luận (0)

Các câu hỏi tương tự
EG
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết