DT

Bài 8. (3,0 điểm) Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B, C là hai tiếp điểm) và cát tuyến ADE (AD < AE). a) Chứng minh: OA  BC và tứ giác ABOC nội tiếp. b) Đường thẳng đi qua điểm C, song song với DE và cắt đường tròn (O) tại F (F khác C). Gọi I là giao điểm của BF và DE. Chứng minh: I là trung điểm của DE. c) Chứng minh rằng: BE.EF + BD.DF = BC.DE.

NT
17 tháng 4 2023 lúc 22:26

a: góc OBA+góc OCA=180 độ

=>ABOC nội tiếp

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC

b: DE//CF

=>sđ cung CD+sđ cung EF
góc AIB=1/2(sđ cung BD+sđ cung EF)

ABOC nội tiếp

=>góc AOB=góc ACB=1/2*sđ cung BC

=1/2(sđ cung EF+sđ cung EB)

=>góc AIB=góc AOB

=>AOIB nội tiếp

=>góc OIA=90 độ

ΔODE cân tại O

mà OI là đường cao

nên I là trung điểm của DE

Bình luận (1)