Đặt A=4(1-x)(1-y)(1-z)
Chứng minh BĐT phụ: \(xy\le\frac{\left(x+y\right)^2}{4}\)(Tự chứng minh)
Áp dụng BĐT thức trên, ta có:
\(A=4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(=4\left(y+z\right)\left(z+x\right)\left(x+y\right)\)
\(\le4.\frac{\left(x+2y+z\right)^2}{4}.\left(x+z\right)\)
\(\Leftrightarrow A\le\left(x+2y+z\right)\left(x+z\right)\left(x+2y+z\right)\)
\(\Rightarrow A\le\frac{\left(x+2y+x+z\right)^2}{4}\left(x+2y+z\right)\)
\(\Rightarrow A\le\frac{4\left(x+y+z\right)^2}{4}\left(x+2y+z\right)\)
\(\Rightarrow A\le x+2y+z\)( do x+y+z=1)
Vậy....