H24

Bài 6: Cho tứ giác ABCD có E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. a. Chứng minh EFGH là hình bình hành. b. Gọi I là trung điểm của BD, K là trung điểm của AC. Chứng minh: EIGK là hình bình hành. c. Gọi O là trung điểm IK. Chứng minh: E, G, O thẳng hàng.

NT
12 tháng 10 2021 lúc 22:37

a: Xét ΔABD có 

E là trung điểm của BA

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

Bình luận (0)