KS

bài 6: Cho tam giác ABC vuông tại A, góc B có số đo bằng 60 độ. Vẽ AH vuông góc với BC,(H thuộc BC)

a) So sánh AB và AC; BH và HC

b) Lấy điểm D thuộc tia đối của tia HA sao cho HD=HA. Chứng minh rằng: tam giác AHC= tam giác DHC

c) Tính số đo của góc BDC

NT
24 tháng 5 2022 lúc 20:01

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
DC
Xem chi tiết
NB
Xem chi tiết
DH
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết