a: \(M=4x+2x^2-x^3-2x^2+x^3-4x+3=3\)
b: \(=x^4-y^4-x^4+y^4=0\)
c: \(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
=0
a: \(M=4x+2x^2-x^3-2x^2+x^3-4x+3=3\)
b: \(=x^4-y^4-x^4+y^4=0\)
c: \(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
=0
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến:
c) (𝑥 − 5)(𝑥 + 8) − (𝑥 + 4)(𝑥 − 1); d) 𝑦^4 − (𝑦^2 − 1)(𝑦^2 + 1);
𝐴 = (𝑥 + 2𝑦) 2 − (2𝑥 + 2𝑦)(𝑥 + 2𝑦) + (𝑥 + 𝑦) 2 tại 𝑥 = 2021, 𝑦 = 1000
Cho 𝑥 + 𝑦 = 3. Tính giá trị của biểu thức: 𝐴 = 𝑥^2 + 2𝑥𝑦 + 𝑦^2 − 5𝑥 − 5𝑦 + 1 Cho 𝑥 − 𝑦 = 6. Tính giá trị của biểu thức: 𝐵 = 𝑥^2 + 6𝑥 + 𝑦^2 − 6𝑦 − 2𝑥𝑦 + 9 Cho 𝑥 − 2𝑦 = 1. Tính giá trị biểu thức 𝐶 = 𝑥^2 + 4𝑦^2 − 3𝑥 − 4𝑥𝑦 + 6𝑦 − 2
1) (𝑥 + 7)2 − 𝑥(𝑥 − 3) = 15 2) (2𝑥 + 3)2 − 4𝑥(𝑥 + 2) = 13 3) (3 − 𝑥)2 − (𝑥 − 2)(𝑥 + 1) = 21 4) (𝑥 − 2)2 − (𝑥 + 1)(𝑥 + 3) = −7 5) (𝑥 + 3)(4 − 𝑥) + (𝑥 + 1)(𝑥 − 1) = 10 6) (𝑥 + 1)2 − (𝑥 − 2)(𝑥 + 2) = 13 7) (5𝑥 − 1)(5𝑥 + 1) = 25𝑥2 − 7𝑥 + 15 8) (2𝑥 − 3)2 = 4(𝑥 − 3)(𝑥 + 3) − 4 . Số 2 ở sau là mũ 2 nhé, giải giúp mình vs
a. Chứng minh rằng ∀ 𝑎, 𝑏 > 0 thì 𝑎 2+𝑏 2 𝑎+𝑏 ≥ 𝑎+𝑏 2
b. Chứng minh rằng ∀ 𝑥, 𝑦, 𝑧 > 0 thì 𝑥 2 𝑥+𝑦 + 𝑦 2 𝑦+𝑧 + 𝑧 2 𝑧+𝑥 = 𝑦 2 𝑥+𝑦 + 𝑧 2 𝑦+𝑧 + 𝑥 2 𝑧+𝑥
c. Chứng minh rằng ∀ 𝑥, 𝑦, 𝑧 > 0 thì 𝑥 2 𝑥+𝑦 + 𝑦 2 𝑦+𝑧 + 𝑧 2 𝑧+𝑥 ≥ 𝑥+𝑦+
Bài 4: a) Cho x - y = 7. Tính giá trị của biểu thức 𝐴 = 𝑥(𝑥 + 2) + 𝑦(𝑦 − 2) − 2𝑥𝑦 + 37.
b) Cho x + y = 3 và x2 + y2 = 5. Tính xy
Bài 1: Rút gọn biểu thức: ( 𝑥 − 1 ) ( 𝑥 − 3 ) − ( 𝑥 − 4 ) ( 2 𝑥 + 1 ) − 3 𝑥
Bài 2:Tìm x:
a,( 𝑥 − 1 ) ( 𝑥 + 2 ) − 𝑥 − 2 = 0
b,(4x+1) (x-2) - (2x-3) (2x+1) = 7
7) a) Tìm giá trịnhỏnhất của biểu thức: 𝐴=(𝑥−1)(𝑥−3)+11
b) Tìm giá trịlớn nhất của biểu thức: 𝐵=5−4𝑥2+4𝑥
c) Cho 𝑥–𝑦=2. Tìm giá trịlớn nhất của đa thức 𝐵=𝑦2−3𝑥2
8) Tìm số𝑎đểđa thức 𝑥3−3𝑥2+5𝑥+𝑎chia hết cho đa thức 𝑥−2
Biến đổi về các hằng đẳng thức, tìm giá trị nhỏ nhất của các biểu thức:
a) 𝐴 = −𝑥^2+ 2𝑥 + 5
b) 𝐵 = −𝑥^2− 8𝑥 + 10
c) 𝐶 = −3𝑥^2+ 12𝑥 + 8
d) 𝐷 = −5𝑥^2+ 9𝑥 − 3
e) 𝐸 = (4 − 𝑥)(𝑥 + 6) f)
𝐹 = (2𝑥 + 5)(4 − 3𝑥)
g) 𝐺 = (2 − 3𝑥)(2𝑥 + 3)
Chứng minh rằng ∀ 𝑥, 𝑦 ∈ 𝑅 thì (𝑥 + 𝑦) 2 ≥ 4𝑥𝑦