DL

Bài 5: Cho tam giác MNP, có A là trung điểm của NP. Trên tia MA lấy điểm B sao cho A là trung điểm MB.
a) Chứng minh: MAP = BAN
b) Chứng minh: MP song song với BN
c) Kẻ BH vuông góc với NP (H thuộc NP). Trên tia BH lấy điểm I sao cho H là trung điểm BI. Chứng minh: AM = AI.
nhanh ạ mình đag kt

 

NT
2 tháng 2 2024 lúc 22:55

a: Xét ΔMAP và ΔBAN có

AM=AB

\(\widehat{MAP}=\widehat{BAN}\)(hai góc đối đỉnh)

AP=AN

Do đó: ΔMAP=ΔBAN

b: Ta có: ΔMAP=ΔBAN

=>\(\widehat{AMP}=\widehat{ABN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MP//BN

c: Xét ΔAIB có

AH là đường cao

AH là đường trung tuyến

Do đó:ΔAIB cân tại A

=>AI=AB

mà AB=AM

nên AI=AM

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
BS
Xem chi tiết
PL
Xem chi tiết
TM
Xem chi tiết
LH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết