Bài 5:  Cho đường tròn (O;R). đường kính AB, kẻ tia tiếp tuyến Ax và trên đó lấy một điểm P sao cho AP> R. Từ P  kẻ tiếp tuyến tiếp xúc với đường tròn tại M.

a) C/m: Tứ giác APMO nội tiếp và BM // OP.

b) Đường thẳng vuông góc với AB tạo O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.

c) C/m: PNMO là hình thang cân. 

NT
28 tháng 7 2023 lúc 23:32

a: góc PAO+góc PMO=180 độ

=>PAOM nội tiếp

Xét (O) có

PA,PM là tiếp tuyến

=>PA=PM

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

góc AMB=1/2*sđ cung AB=90 độ

=>MB vuông góc AM

=>OP//MB

b: Xét ΔPAO vuông tại A và ΔNOB vuông tại O có

OA=OB

góc POA=góc NBO

=>ΔPAO=ΔNOB

=>PO=NB

mà PO//NB

nên POBN là hình bình hành

 

Bình luận (0)