NL

Bài 5: Cho \(\Delta ABC\), các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B
và đường vuông góc với AC cắt nhau tại K. Gọi M là trung điểm của BC.
a) Chứng minh \(\Delta ADB\) đồng dạng với \(\Delta AEC\)

b) Chứng minh HE.HC = HD.HB
c) Chứng minh H, K, M thằng hàng
d) \(\Delta ABC\) phải có điều kiện gì thì tứ giác BHCK là hình thoi? Là hình chữ nhật?

NT
7 tháng 2 2022 lúc 23:55

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

b: Xét ΔEHB vuông tại E và ΔDHC vuông tại H có 

\(\widehat{EHB}=\widehat{DHC}\)

Do đó: ΔEHB\(\sim\)ΔDHC

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

hay \(HE\cdot HC=HB\cdot HD\)

c: Xét tứ giác HBKC có

HB//KC

HC//BK

Do đó: HBKC là hình bình hành

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

hay H,M,K thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
BP
Xem chi tiết
PL
Xem chi tiết
BL
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NP
Xem chi tiết
CK
Xem chi tiết
ML
Xem chi tiết
CC
Xem chi tiết