H24

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. BIẾT AC=4cm, BC-5cm, góc ABC=30 a) Tính độ dài AB, AH b)Từ H lần lượt dùng các đường thẳng song song với AB và AC các đường thẳng này cắt AB tại E và AC tại F. Chứng minh BE. HC=HB.HF. Bài 5.Cho tam giác ABC vuông tại , có đường cao AH. Biết rằng AC Son AB=ACH a) Tính cạnh AH HB HC và BC b) Gọi p là hình chiếu của H xuống 48. Chứng minh rằng AP AR MW HAN Bài 6 Cho tam giác tê vuông tại 4 có đường cao 01 chia cạnh huyện 00 thành hai đoạn hồi 6cm và Htman. a) Tính độ dài các đoạn AH AB, AC, b) Gọi K là trung điểm của C. Ke M8 L BM(K = BM) Chứng minh: BK BM = BH BK Bài 7.Cho tam giác ABC vuông tại 4, đường cao AH. Biết AB = 12cm: BC = 200m. a) Tính độ dài AC BH và III. b) Ching minh HB.HC AC-HC Bài 8 Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm, BC = 15cm. a) Tính độ dài AC và AH. bị Ke tia phân giác. 4 của BIC (M = BC). Tính diện tích tam giác ABM (làm tròn đến chữ thập phân thứ nhất)

NT
2 tháng 12 2023 lúc 8:56

Bài 7: Sửa đề; AB=12cm; BC=20cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot20=12^2=144\)

=>BH=144/20=7,2(cm)

b: ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)

Bài 8:

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=15^2-9^2=144\)

=>\(AC=\sqrt{144}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot15=9^2=81\)

=>BH=81/15=5,4(cm)

 b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM

Xét ΔABC có AM là phân giác

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)

=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)

=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)

=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)

=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)

=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)

=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)

=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
XT
Xem chi tiết
DC
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết
TX
Xem chi tiết
MT
Xem chi tiết
TN
Xem chi tiết