LO

Bài 4. Cho tam giác ABC vuông tại A có C = 30 deg Trên cạnh BC lấy điểm M sao cho BM = BA. Chứng minh rằng: a) tâm giác AMB đều. b) AM = (BC)/2 c) Kẻ phân giác của góc AMC cắt Ac tại D. CM:AB//MD.

NT
20 tháng 1 2024 lúc 11:33

a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-30^0=60^0\)

Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)

nên ΔBAM đều

b: Ta có: ΔMAB đều

=>\(\widehat{MAB}=60^0\)

Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)

=>\(\widehat{MAC}+60^0=90^0\)

=>\(\widehat{MAC}=30^0\)

Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)

nên ΔMAC cân tại M

=>MA=MC

mà MB=MA

nên MB=MC

=>M là trung điểm của BC

=>\(AM=MB=\dfrac{1}{2}BC\)

c: Ta có: ΔMAC cân tại M

mà MD là đường phân giác

nên MD\(\perp\)AC

Ta có: MD\(\perp\)AC

AB\(\perp\)AC

Do đó: MD//AB

Bình luận (0)

Các câu hỏi tương tự
AL
Xem chi tiết
LL
Xem chi tiết
7N
Xem chi tiết
LN
Xem chi tiết
HO
Xem chi tiết
TV
Xem chi tiết
NB
Xem chi tiết
NT
Xem chi tiết
DP
Xem chi tiết