H24

Bài 4. Cho tam giác ABC cân tại A (Â < 90o). Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a)Chứng minh tam giác ABD = tâm giác ACE để suy ra CE = BD
b)Chứng minh AH là phân giác của góc BAC.
c)Chứng minh DE // BC
d)Trên tia CE lấy điểm M sao cho E là trung điểm của HM. Trên tia BD lấy điểm N sao cho D là trung điểm của HN. Chứng minh AM = AH và tam giác AMN cân.
e)Tam giác ABC cho trước phải có điều kiện gì để tam giác AMN là tam giác đều.

NT
16 tháng 3 2022 lúc 21:50

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE
Suy ra; BD=CE

b: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

Do đó: ΔAEH=ΔADH

Suy ra: \(\widehat{EAH}=\widehat{DAH}\)

hay AH là tia phân giác của góc BAC

c: Xét ΔABC cso AE/AB=AD/AC

nên DE//BC

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
MT
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
BQ
Xem chi tiết