DN

Bài 3: Để chạy xe từ sân lên nhà, người ta làm một cầu dắt xe như hình vẽ. Biết độ cao của bậc thềm AB = 55 cm, chiều dài từ chân bậc thềm tới điểm đặt còn lại của cầu dắt xe là AC = 75cm. Tính chiều dài của cầu dắt xe (kết quả làm tròn đến hàng phần mười)? (1đ)

Bài 4: Hình bên là một cái lều ở một trại hè của học sinh tham gia cắm trại có dạng hình chóp tứ giác đều theo các kích thước như hình vẽ:

a/ Thể tích không khí bên trong lều là bao nhiêu biết chiều cao của chiếc lều là 2,8 m và độ dài cạnh đáy của lều 4,8 m  ?

b/ Xác định số vải bạt cần thiết để dựng lều ( không tính đến đường viền, nếp gấp, đáy…) là bao nhiêu ? Biết chiều cao mặt bên của lều trại là 4m

Bài : Cho tam giác ABC vuông tại A ( AB < AC). Gọi M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M lên AB và AC.

a/ Chứng minh: ADME là hình chữ nhật (1 đ)

b/ Chứng minh: D là trung điểm của AB và BMEB là hình bình hành. (1 đ)

c/ Gọi N là điểm đối xứng của M qua D, P là điểm đối xứng của M qua E. Chứng minh: P, A, N thẳng hàng (0,5 đ)

E cảm ơn nhiều ạa

 

NT
22 tháng 12 2023 lúc 17:49

Bài 3,4: Bạn cho mình xin hình vẽ nha bạn

Bài 5:

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b:

Sửa đề: Chứng minh BMED là hình bình hành

Xét ΔABC có

M là trung điểm của BC

MD//AC(Cùng vuông góc với AB)

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB(cùng vuông góc với AC)

Do đó: E là trung điểm của AC

Xét ΔABC có

E,M lần lượt là trung điểm của CA,CB

=>EM là đường trung bình của ΔABC

=>EM//AB và \(EM=\dfrac{AB}{2}\)

Ta có: EM//AB

D\(\in\)AB

Do đó: EM//BD

Ta có: \(EM=\dfrac{AB}{2}\)

\(DB=\dfrac{AB}{2}\)

Do đó: EM=BD

Xét tứ giác EMBD có

EM//BD

EM=BD

Do đó: EMBD là hình bình hành

c: Xét tứ giác AMBN có

D là trung điểm chung của AB và MN

=>AMBN là hình bình hành

Hình bình hành AMBN có MN\(\perp\)AB

nên AMBN là hình bình hành

=>AB là phân giác của góc MAN

=>\(\widehat{MAN}=2\cdot\widehat{MAB}\)

Xét tứ giác AMCP có

E là trung điểm chung của AC và MP

=>AMCP là hình bình hành

Hình bình hành AMCP có AC\(\perp\)MP

nên AMCP là hình thoi

=>AC là phân giác của góc MAP

=>\(\widehat{MAP}=2\cdot\widehat{MAC}\)

Ta có: \(\widehat{MAP}+\widehat{MAN}=\widehat{PAN}\)

=>\(\widehat{PAN}=2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)\)

=>\(\widehat{PAN}=2\cdot\widehat{BAC}=180^0\)

=>P,A,N thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
TV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HM
Xem chi tiết
18
Xem chi tiết
NC
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết