AP

Bài 3 Cho ΔABC cân tại A. Kẻ BH vuông góc với AC, CK vuông góc với AB. Gọi M là giao điểm của của BH và CK. a) Chứng minh AH = AK. b) Chứng minh AM là tia phân giác của góc A. c) Chứng minh KH // BC.

mình mới hc tới bài pitago '

NT
23 tháng 2 2022 lúc 20:30

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
\(\widehat{BAH}\) chung

Do đó:ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó:ΔKBC=ΔHCB

Suy ra: \(\widehat{MBC}=\widehat{MCB}\)

hayΔMBC cân tại M

Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của góc A

c: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

Bình luận (0)

Các câu hỏi tương tự
AP
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
LH
Xem chi tiết
NH
Xem chi tiết
HQ
Xem chi tiết
RL
Xem chi tiết
LL
Xem chi tiết