MY

Bài 3: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc BC (H thuộc BC)

a. Chứng minh: HB = HC.

b. Tính độ dài AH.

c. Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).

Chứng minh ΔHDE cân.

d) So sánh HD và HC.

Bài 4. Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.

b) Chứng minh AM

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

NT
27 tháng 6 2021 lúc 9:51

Bài 3: 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Ta có: BH=CH(cmt)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3(cm)

c) Xét ΔDBH vuông tại D và ΔECH vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Bình luận (0)
MY
27 tháng 6 2021 lúc 9:48

vẽ hình giúp mk nha

Bình luận (0)
NT
27 tháng 6 2021 lúc 9:56

Bài 4: 
a) Xét ΔAMB và ΔAMC có 

AM chung

MB=MC(M là trung điểm của BC)

AB=AC(ΔBAC cân tại A)

Do đó: ΔAMB=ΔAMC(c-c-c)

Suy ra: \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC

c) Ta có: BM=CM(M là trung điểm của BC)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2\)

\(\Leftrightarrow AM^2=5^2-3^2=16\)

hay AM=4(cm)

Vậy: BM=3cm; AM=4cm

Bình luận (0)

Các câu hỏi tương tự
DP
Xem chi tiết
7N
Xem chi tiết
RR
Xem chi tiết
PA
Xem chi tiết
HL
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
HD
Xem chi tiết
NN
Xem chi tiết