NL

Bài 3: (3 điểm) Cho tam giác ABC vuông ở A. Hạ AH⊥ BC (H thuộc BC). Hạ HM1 AB, HN AC. a) Chứng minh rằng AB² = BH.BC. b) Chứng minh rằng △AMN 5 ACB. c) Gọi O là trung điểm BC. Chứng minh AOL MN tại I. d) Cho PAAMN = 12cm; PABC = 24cm; Tính ABC?

NT

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAH}\) chung

Do đó: ΔAMH~ΔAHB

=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

=>\(AM\cdot AB=AH^2\)

Xét ΔANH vuông tại N và ΔAHC vuông tại H có

\(\widehat{NAH}\) chung

Do đó: ΔANH~ΔAHC

=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)

=>\(AN\cdot AC=AH^2\)

Do đó: \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN~ΔACB

c: O là trung điểm của BC

mà ΔABC vuông tại A

nên OA=OB=OC

OA=OC nên ΔOAC cân tại O

ΔANM~ΔABC

=>\(\widehat{ANM}=\widehat{ABC}\)

\(\widehat{ANM}+\widehat{OAC}=\widehat{ACB}+\widehat{ABC}=90^0\)

=>MN\(\perp\)AO tại I

Bình luận (0)