CD

Bài 2.Cho tam giác ABC vuôngtạiA ,có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (HϵBC)
a) Tính độ dài BC;AH;BH; Diện tích ΔABC?
b) Chứng minh ΔHBA đồng dạngvới ΔHAC  
c) Chứng minh HA= HB.HC
d) Kẻ đường phân giác AD (DϵBC ). Tính các độ dài DB và DC?

H24
21 tháng 3 2023 lúc 20:50

a.

• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :

BC^2 = AC^2 + AB^2 

BC^2 = 3^2 + 4^2

BC^2 = 9 + 16

BC^2 = 25

BC = căn bậc 2 của 25

BC = 5 ( cm )

vậy BC = 5 cm

• diện tích của tam giác ABC là :

3 . 4 : 2 = 6 ( cm^2 )

vậy diện tích của tam giác ABC là 6 cm^2

b. xét tam giác HBA và tam giác HAC, ta có :

góc HBA = góc HAC ( hai góc kề bù )

góc A là góc chung ( gt )

do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )

c. HA/HB = HC/HA ( cmt )

=> HA^2 = HB . HC

d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )

nên BD = 1/2 . 5 = 2,5 ( cm )

mà BD = DC = 1/2BC

=> DC = 2,5 ( cm )

vậy BC , DC = 2,5 cm

Bình luận (0)
NT
21 tháng 3 2023 lúc 23:44

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=3^2/5=1.8cm

\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

d: ΔABC có AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
TT
Xem chi tiết
VN
Xem chi tiết
TL
Xem chi tiết
NQ
Xem chi tiết
H2
Xem chi tiết
LN
Xem chi tiết
TL
Xem chi tiết
PD
Xem chi tiết