HC

Bài 21: Cho ΔABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy điểm N
sao cho M là trung điểm của AN.
a) Chứng minh rằng: ΔAMB = ΔNMC
b) Vẽ CD AB (D AB). Tính góc DCN.
c) Vẽ AH BC (H BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Chứng minh : BI = CN.
           mình cảm ơn 

NT
11 tháng 1 2024 lúc 9:39

a: Xét ΔAMB và ΔNMC có

MA=MN

\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔNMC

b: ta có: ΔAMB=ΔNMC

=>\(\widehat{MAB}=\widehat{MNC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//NC

Ta có: AB//NC

CD\(\perp\)AB

Do đó: CD\(\perp\)CN

=>\(\widehat{DCN}=90^0\)

c: Xét ΔBAI có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAI cân tại B

=>BA=BI

mà BA=CN

nên BI=CN

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
PM
Xem chi tiết
PM
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
DL
Xem chi tiết
DL
Xem chi tiết