Bài 20.Cho tam giác ABC vuông tại A có AB < AC. Vẽ đường cao AH của tam giác ABC, vẽ AD là
phân giác của HAC ̂ (D ∈ HC). Vẽ DE ⊥ AC tại E.
a) Chứng minh rằng ∆ADH = ∆ADE, từ đó suy ra DH = DE.
b) Gọi K là giao điểm của AH và DE. Chứng minh rằng ∆DKC cân.
c) Gọi F là trung điểm của KC. Chứng minh 3 điểm A, D, F thẳng hàng.
a: Xét ΔADH vuông tại H và ΔADE vuông tại E có
AD chung
góc HAD=góc EAD
=>ΔADH=ΔADE
=>Dh=DE
b: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
c: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
=>ΔAKC cân tại A
mà AF là trung tuyến
nên AF là phân giác của góc KAC
=>A,D,F thẳng hàng