Ôn tập Đường tròn

LB

Bài 2: Qua điểm M nằm bên ngoài ( ); R) Kẻ 2 tiếp tuyến MA, MB (A, B là tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O ( C nằm giữa D) ( *vẽ hình*)

a) CM: tứ giác MAOB nội tiếp và MO ⊥ AB

b) CM: MA . AD= MD . AC

c) Gọi I là chung điểm của dây cung CD và E là giao điểm của 2 đường thẳng AB và OI. Tính độ dài đường  thẳng OE theo R khi OI = R3R3

d) Qua tâm O kẻ đườn thẳng ⊥ với OM cắt các đường thẳng MA, MB lần lượt tại P, Q. Tính vị trí điểm M để diện tích tam giác MPQ đạt giá trị nhỏ nhất

(mink đag cần gấp)

NT
21 tháng 3 2021 lúc 22:41

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{MAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔMDA∼ΔMAC(g-g)

Suy ra: \(\dfrac{MD}{MA}=\dfrac{AD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot AD=MD\cdot AC\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
LB
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
LM
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết