Tứ giác

ND

Bài 2: Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là trung điểm của AB, AC và BC. Vẽ điểm I sao cho D là trung điểm của IF.

a) CM: tứ giác BDEC là hình thang; b) CM: tứ giác AEFD, AFBI là hình bình hành.

 

NT
20 tháng 12 2023 lúc 19:23

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

b: Xét ΔABC có

D,F lần lượt là trung điểm của BA,BC

=>DF là đường trung bình của ΔABC

=>DF//AC và \(DF=\dfrac{AC}{2}\)

DF//AC

E\(\in\)AC

Do đó: DF//AE

Ta có: \(DF=\dfrac{AC}{2}\)

\(AE=\dfrac{AC}{2}\)

Do đó: DF=AE

Xét tứ giác ADFE có

DF//AE

DF=AE

Do đó: ADFE là hình bình hành

Xét tứ giác AFBI có

D là trung điểm chung của AB và FI

=>AFBI là hình bình hành

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:28

Hình vẽ:

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:27

Lời giải:

a. Do $D$ là trung điểm $AB$, $E$ là trung điểm $AC$ nên $DE$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$

$\Rightarrow DE\parallel BC$

$\Rightarrow DECB$ là hình thang.

b. $E,F$ lần lượt là trung điểm $AC, BC$

$\Rightarrow EF$ là đường trung bình ứng với cạnh $AB$

$\Rightarrow EF\parallel AB$ và $EF=AB:2$

$\Rightarrow EF\parallel AD$ và $EF=AD$

$\Rightarrow AEFD$ là hình bình hành (tứ giác có 2 cạnh đối song song và bằng nhau)

Tứ giác $AFBI$ có 2 đường chéo $FI, AB$ cắt nhau tại trung điểm $D$ của mỗi đường nên $AFBI$ là hbh.

Bình luận (0)
AH
20 tháng 12 2023 lúc 19:30

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
ND
Xem chi tiết
PD
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết
NB
Xem chi tiết
LA
Xem chi tiết
NL
Xem chi tiết
JH
Xem chi tiết