Tứ giác

JH

Bài 1: Cho tam ABC vuông tại A Gọi M, N là lần lượt là trung điểm AB, BC. a) Chứng minh tứ giác AMNC là hình thang vuông b) Gọi E, F lần lượt là trung điểm AM, CN. Tỉnh đoạn EF biết AB = 5 cm , BC = 13 cm

TM
23 tháng 8 2021 lúc 16:11

a/ Ta có: M là trung điểm của AB, N là trung điểm của BC

⇒ MN là đường trung bình của △ABC ⇒ MN // AC (1)

- AB hay AM ⊥ AC (2)

Từ (1) và (2) 

Vậy: Tứ giác AMNC là hình thang vuông (đpcm)

===========

b/ Áp dụng định lí Pytago vào △ABC được: \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

Do MN là đường trung bình của △ABC \(\Rightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

- E là trung điểm AM, F là trung điểm CN ⇒ EF là đường trung bình của hình thang AMNC ⇒ \(EF=\dfrac{MN+AC}{2}=\dfrac{6+12}{2}=9\left(cm\right)\)

Vậy: EF = 9 cm

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết