H24

Bài 2:  Cho tam giác ABC vuông tại A , AB = 8cm, AC = 6cm .
a) Tính BC .
b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ∆BEC = ∆DEC theo trường hợp ( c.c.c ) , ( c.g.c ) , ( g.c.g )

NT
26 tháng 6 2023 lúc 13:05

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

=>CB=CD và góc ACB=góc ACD

Xét ΔBEC và ΔDEC có

CB=CD

góc BCE=góc DCE

CE chung

=>ΔBEC=ΔDEC(c-g-c)

Xét ΔEDB có

EA vừa là đường cao, vừa là trung tuyến

=>ΔEDB cân tại E

=>ED=EB

Xét ΔCDE và ΔCBE có

CD=CB

DE=BE

CE chung

=>ΔCDE=ΔCBE(c-c-c)

góc CDE+góc EDA=góc CDA

góc CBE+góc EBA=góc CBA

mà góc CDA=góc CBA và góc EDB=góc EBD

nên góc CDE=góc CBE

Xét ΔCEB và ΔCED có

góc CBE=góc CDE

BC=DC

góc BCE=góc DCE

=>ΔCEB=ΔCED

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
HB
Xem chi tiết
HN
Xem chi tiết
NM
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
CD
Xem chi tiết
NT
Xem chi tiết