KS

bài 2: Cho tam giác ABC cân tại A, các đường cao BD (D thuộc AC) và CE(E thuộc AB) cắt nhau ở H. Gọi M là trung điểm của BC

a) Chứng minh rằng AH đi qua M

b) Cho biết AC=10 cm, BC=16 cm. Hãy tính AM

 

NT
23 tháng 5 2022 lúc 19:52

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{HCB}=\widehat{HBC}\)

hay ΔHBC cân tại H

=>HB=HC

mà AB=AC

nên AH là đường trung trực của BC

=>A,H,M thẳng hàng

b: BC=16cm nên BM=CM=8cm

=>AM=6cm

Bình luận (0)
HP
23 tháng 5 2022 lúc 19:59

a. Nối AM

Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:

\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Mà: \(\widehat{BMC}=180^o\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM.là.đường.cao\)

Mà H là giao của BD và CE

Vậy H là trực tâm của tam giác ABC

Vậy AH đi qua M

b. \(MC=16:2=8\left(cm\right)\)

Áp dụng định lý Pi - ta - go, suy ra:

\(AM^2+MC^2=AC^2\)

\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
SP
Xem chi tiết
H24
Xem chi tiết
RK
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết