DT

Bài 2: Cho biểu thức: D= 1 x+4 + x x-4 + (24 - x ^ 2)/(x ^ 2 - 16) * voi x ne pm4.
1) Chứng minh D= 5/(x - 4) *
2) Tính giá trị của biểu thức Dtaix = 10
3) Cho M = (x-2).D. Tìm các số tự nhiên x để giá trị của biểu thức M là số nguyên.

NT
15 tháng 12 2023 lúc 20:19

1: \(D=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{x^2-16}\)

\(=\dfrac{1}{x+4}+\dfrac{x}{x-4}+\dfrac{24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{x-4+x\left(x+4\right)+24-x^2}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{-x^2+x+20+x^2+4x}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x+20}{\left(x+4\right)\left(x-4\right)}\)

\(=\dfrac{5\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5}{x-4}\)

2: Khi x=10 thì \(D=\dfrac{5}{10-4}=\dfrac{5}{6}\)

3: \(M=\left(x-2\right)\cdot D=\dfrac{5\left(x-2\right)}{x-4}\)

Để M là số nguyên thì \(5\cdot\left(x-2\right)⋮x-4\)

=>\(5\left(x-4+2\right)⋮x-4\)

=>\(5\left(x-4\right)+10⋮x-4\)

=>\(10⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(x\in\left\{5;3;6;2;9;-1;14;-6\right\}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
MT
Xem chi tiết
TL
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết