Cho tam giác ABC, đường cao AH. Ở phía ngoài tam giác, ta vẽ các tam giác ACE và ABD vuông cân tại đỉnh A. Trên tia đối của tia AH lấy điểm K sao cho AK = BC. Chứng minh rằng tứ giác ADKE là hình bình hành.
Cho tam giác ABC, đường cao AH,ở phía ngoài tam giác . Vẽ các tam giác vuông cân ACE,ABD tại đỉnh A. Trên tia đối của tia AH lấy điểm K . Sao cho AK = BC . Cmr tứ giác ADKE là hình bình hành.
Cho tam giác ABC nhọn. Ở phía ngoài tam giác ABC, vẽ các tam giác vuông cân tại A là ABD và ACE. Gọi AH là đường cao của tam giác ABC. Trên tia đối tia AH lấy K sao cho AK = BC. Chứng minh rằng ADKE là hình bình hành.
MỌI NGƯỜI GIẢI (không cần chi tiết) HỘ MÌNH NHA!!! CẢM ƠN NHIỀU!!!!!!
Cho tam giác ABC nhọn. Ở phía ngoài tam giác ABC, vẽ các tam giác vuông cân tại A là ABD và ACE. Gọi AH là đường cao của tam giác ABC. Trên tia đối tia AH lấy K sao cho AK = BC. Chứng minh rằng ADKE là hình bình hành.
MỌI NGƯỜI GIẢI (không cần chi tiết) HỘ MÌNH NHA!!! CẢM ƠN NHIỀU!!!!!!
cho tam giác ABC, đường cao AM. gọi N là trung điểm của AB, vẽ điểm D đối xứng với điểm M qua N
a) chứng minh tứ giác AMBD là hình chữ nhật.
b) trên tia của tia AD lấy 1 điểm K sao cho AK = BC. chứng minh tứ giác ABCK là hình bình hành.
c) tứ giác KCMD là hình gì? vì sao?
cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABRD, ACEF. Vẽ đường cao AH kéo dài gặp DF ở I. Chứng minh rằng DI=IF.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC, đường cao AH. Ở phía ngoài tam giác, ta vẽ các tam giác ACE và ABD vuông cân đỉnh A. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh tứ giác ADKE là hình bình hành
Cho tam giác ABC. Vẽ ra phía ngoài tam giác các hình vuông ABDE, ACFG và
hình bình hành AGKE. Chứng minh rằng:
a) AK = BC.
b) AK vuông góc BC.
c) Các đường thẳng AK, BF, CD đồng quy.