Điều kiện để phương trình trở nên có nghĩa là : \(x^2-x-6\ge0\)
Đặt : \(\sqrt{x^2-x-6}=t\left(t\ge0\right)\)
\(\Rightarrow x^2-x-18=t^2-12\left(t^2-12\ge0\right)\)
Khi đó phương trình trở thành :
\(t^2-t-12=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}t=3\left(nhận\right)\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow x^2-x-6=9\)
\(\Leftrightarrow x^2-x-15=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{61}}{2}\\x_2=\dfrac{1+\sqrt{61}}{2}\end{matrix}\right.\)
\(Vậy...\)