\(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{3}{7}\right)\times\left(1-\dfrac{3}{10}\right)\times\left(1-\dfrac{3}{97}\right)\times\left(1-\dfrac{3}{100}\right)\)
\(=\dfrac{2}{3}\times\dfrac{4}{7}\times\dfrac{7}{10}\times...\times\dfrac{94}{97}\times\dfrac{97}{100}\)
\(=\dfrac{2\times4\times7\times...\times94\times97}{3\times7\times10\times...\times97\times100}\)
\(=\dfrac{2\times4}{3\times100}=\dfrac{8}{300}=\dfrac{2}{75}\)
\(A=\dfrac{2}{3}\cdot\dfrac{4}{7}\cdot\dfrac{7}{10}\cdot...\cdot\dfrac{94}{97}\cdot\dfrac{97}{100}=\dfrac{2}{3}\cdot\dfrac{1}{25}=\dfrac{2}{75}\)