NH

Bài 1;

a) A=2023VÀ B= 2022.2024

b) A= 20242 VÀ B= 2023.2025

C) A=  2023 . 2027 VÀ B= 20252

D) 10750 VÀ 7375

E) 1993 VÀ 7714

Cần giúp trước thứ 5 ngày 13/10/2023 ạ

KR
9 tháng 10 2023 lúc 22:18

`#3107.101107`

a)

`A = 2023^2` và `B = 2022*2024`

Ta có:

`A = 2023^2 = 2023*2023 = 2023*(2022 + 1) = 2023*2022 + 2023`

`B = 2022*2024 = 2022*(1 + 2023) = 2022*2023 + 2022`

Vì `2023 > 2022`

`=> 2023^2 > 2022*2024`

`=> A > B`

b)

`A=2024^2` và `B = 2023*2025`

`A = 2024^2 = 2024*2024 = 2024*(2023 + 1) = 2024*2023 + 2024`

`B = 2023*2025 = 2023*(2024 + 1) = 2023*2024 + 2023`

Vì `2024 > 2023 => 2024^2 > 2023*2025 => A > B`

Vậy, `A > B`

c)

`A = 2023*2027` và `B = 2025^2`

Ta có:

`A = 2023*(2025 + 2) = 2023*2025 + 4046`

`B = 2025^2 = 2025*2025 = 2025*(2023 + 2) = 2025*2023 + 4050`

Vì `4046 < 4050 => 2023*2027 < 2025^2 => A < B`

Vậy, `A < B`

d)

`107^50` và `73^75`

Ta có:

`107^50 = 107^(2*50) = (107^2)^25 = 11449^25`

`73^75 = 73^(3*25) = (73^3)^25 = 389017^25`

Vì `11449 < 389017 => 11449^25 < 389017^25 => 107^50 < 73^75`

Vậy, `107^50 < 73^75`

e)

`2^1993` và `7^714`

Ta có:

`2^1993 = 2^1988 * 2^5 = (2^14)^142 * 2^5 = 16384^142 * 32`

`7^714 = 7^710 * 7^4 = (7^5)^142 * 7^4 = 16807^142 * 2401`

Vì `16384 < 16807; 32 < 2401`

`=> 2^1993 < 7^714.`

Bình luận (2)

Các câu hỏi tương tự
HN
Xem chi tiết
DT
Xem chi tiết
CX
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
HK
Xem chi tiết
TV
Xem chi tiết