HN

 Bài 11: 

Cho nửa đường tròn tâm O đường kính C . Gọi Cx, Dy là các tia vuông góc với CD (Cx,Dy và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ CD). Qua M thuộc nửa đường tròn (M khác C và D), kẻ tiếp tuyến với nửa đường tròn nó cắt Cx và Dy theo thứ tự ở A và B. Chứng minh rằng:

A,Góc AOB=9O độ

B, AB = CA+DB

C, Tính CA.DB ko đổi khi điểm M di chuyển trên nửa đường tròn  

 SOS

NT
22 tháng 11 2023 lúc 20:38

a: Xét (O) có

AM,AC là tiếp tuyến

Do đó: AM=AC và OA là tia phân giác của \(\widehat{MOC}\)

=>\(\widehat{MOC}=2\cdot\widehat{MOA}\)

Xét (O) có

BM,BD là tiếp tuyến

Do đó: BM=BD và OB là phân giác của \(\widehat{MOD}\)

=>\(\widehat{MOD}=2\cdot\widehat{MOB}\)

\(\widehat{MOC}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOA}+2\cdot\widehat{MOB}=180^0\)

=>\(2\left(\widehat{MOA}+\widehat{MOB}\right)=180^0\)

=>\(\widehat{MOA}+\widehat{MOB}=\dfrac{180^0}{2}=90^0\)

=>\(\widehat{AOB}=90^0\)

b: AB=AM+BM

mà AM=AC và BM=BD

nên AB=AC+BD

c: Xét ΔOAB vuông tại O có OM là đường cao

nên \(AM\cdot MB=OM^2\)

=>\(AC\cdot BD=R^2\) không đổi khi M di chuyển trên (O)

Bình luận (0)

Các câu hỏi tương tự
VO
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
BT
Xem chi tiết
ND
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết