Bài 3: Đồ thị của hàm số y = ax + b ( a khác 0)

HD

Bài 1: Xác định m để hai đường thẳng (d): y= mx-4 và (d'): y= x+m cắt nhau tai 1 điểm thuộc:

a. Trục tung

b. Trục hoành

c. Cắt nhau tại điểm có tung độ bằng 1.

Bài 2: Cho đường thẳng (d): y= (m+1)x -m -3

a. Chứng tổ rằng (d) luôn đi qua 1 điểm với bất kỳ m nào.

b. Tìm m để đường thẳng (d) cắt hai trục tọa độ tai hai điểm A, B sao cho tam giác OAB vuông cân với O là gốc tọa độ.

AH
8 tháng 5 2018 lúc 18:07

Bài 1:

Gọi giao điểm của 2 đths là \(I(x_I,y_I)\)

a)

Giao điểm nằm trên trục tung thì \(x_I=0\)

Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} y_I=m.0-4=-4\\ y_I=0+m=m\end{matrix}\right.\)

\(\Rightarrow m=-4\)

b) Giao điểm nằm trên trục hoành thì \(y_I=0\)

Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} 0=mx_I-4\\ 0=x_I+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=4\\ x_I=-m\end{matrix}\right.\)

\(\Rightarrow -m^2=4\) (VL)

Vậy k tồn tại $m$ để hai đths cắt nhau tại một điểm trên trục hoành.

c)

Hai đths cắt nhau tại điểm có tung độ bằng $1$

\(\Leftrightarrow \left\{\begin{matrix} mx_I-4=1\\ x_I+m=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=5\\ x_I=1-m\end{matrix}\right.\)

\(\Rightarrow m(1-m)=5\)

\(\Leftrightarrow (m-\frac{1}{2})^2+\frac{19}{4}=0\) (VL)

Vậy k tồn tại $m$ để 2 đths cắt nhau tại điểm có tung độ bằng $1$

 

 

Bình luận (0)
AH
8 tháng 5 2018 lúc 18:25

Bài 2:

\(y=(m+1)x-m-3, \forall m\)

\(\Leftrightarrow m(x-1)+x-3-y=0, \forall m\)

Để điều này xảy ra thì \(\left\{\begin{matrix} x-1=0\\ x-3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-2\end{matrix}\right.\)

Như vậy $(d)$ luôn đi qua điểm \((1,-2)\) với mọi $m$

b) ĐK: \(m\neq -1\)

\(A=(d)\cap Ox\Rightarrow \left\{\begin{matrix} y_A=0\\ y_A=(m+1)x_A-m-3\end{matrix}\right. \)

\(\Rightarrow \left\{\begin{matrix} y_A=0\\ x_A=\frac{m+3}{m+1}\end{matrix}\right.\)

\(B=(d)\cap Oy\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=(m+1)x_B-m-3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=-m-3\end{matrix}\right.\)

Vì $A,B$ nằm trên trục hoành và trục tung nên hiển nhiên tam giác $OAB$ vuông sẵn. Vậy để nó là tam giác vuông cân thì $OA=OB$

\(\Leftrightarrow \sqrt{(\frac{m+3}{m+1})^2}=\sqrt{(-m-3)^2}\)

\(\Leftrightarrow (\frac{m+3}{m+1})^2=(m+3)^2\)

\(\Leftrightarrow (m+3)^2\left(\frac{1}{(m+1)^2}-1\right)=0\)

\(\Rightarrow \left[\begin{matrix} m=-3\\ m=-2\\ m=0\end{matrix}\right.\)

Với $m=-3$ thì $A,B$ trùng nhau nên $m=0,-2$

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
QM
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
LB
Xem chi tiết
MH
Xem chi tiết