Bài 1: Căn bậc hai

LN

Bài 1: So sánh

a> 11 và \(\sqrt{99}\)

b> 5 và \(\sqrt{11}\) + 1

c> 2 và 1+\(\sqrt{2}\)

d> 3\(\sqrt{11}\) và 12

e> -10 và -2\(\sqrt{23}\)

f> 4 và 1+\(\sqrt{7}\)

AT
10 tháng 6 2018 lúc 19:05

a/ Có: \(\sqrt{99}< \sqrt{100}=10\) mà 10 < 11

=> \(11>\sqrt{99}\)

b/ có: √11 < √16 =4

=> √11 + 1 < 4 + 1 = 5

hay 5 > √11 + 1

c/ Có: √2 > √1 = 1

=> √2 + 1 > 1 + 1 = 2

hay 2 < 1 + √2

d/ 3√11 = √99 ; 12 = √144

mà √99 < √144

=> 3√11 < 12

e/ - 10 = -√100 ; -2√23 = -√92

Có: √100 > √92 => -√100 < - √92

hay -10 < -2√23

f/ Có: √7 < √9 = 3

=> 1 + √7 < 1 + 3 = 4

hay 4 > 1 + √7

Bình luận (0)
HH
10 tháng 6 2018 lúc 19:10

Giải:

a) Ta có:

\(11=\sqrt{121}\)

\(\sqrt{121}>\sqrt{99}\)

\(\Leftrightarrow11>\sqrt{99}\)

Vậy ...

b) Ta có:

\(5=4+1=\sqrt{16}+1\)

\(\sqrt{16}+1>\sqrt{11}+1\)

\(\Leftrightarrow5>\sqrt{11}+1\)

Vậy ...

c) Ta có:

\(2=1+1=\sqrt{1}+1\)

\(\sqrt{1}+1< 1+\sqrt{2}\)

\(\Leftrightarrow2< 1+\sqrt{2}\)

Vậy ...

d) Ta có:

\(3\sqrt{11}=\sqrt{9.11}=\sqrt{99}\)

\(12=\sqrt{144}\)

\(\sqrt{99}< \sqrt{144}\)

\(\Leftrightarrow3\sqrt{11}< 12\)

Vậy ...

e) Ta có:

\(-10=-\sqrt{100}\)

\(-2\sqrt{23}=-\sqrt{92}\)

\(-\sqrt{100}< -\sqrt{92}\)

\(\Leftrightarrow-10< -2\sqrt{23}\)

Vậy ...

f) Ta có:

\(4=1+3=1+\sqrt{9}\)

\(1+\sqrt{9}>1+\sqrt{7}\)

\(\Leftrightarrow4>1+\sqrt{7}\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
SK
Xem chi tiết
SM
Xem chi tiết
TH
Xem chi tiết
HN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết